Lattice-distortion Induced Magnetic Transition from Low-temperature Antiferromagnetism to High-temperature Ferrimagnetism in Double Perovskites A2FeOsO6 (A = Ca, Sr)
نویسندگان
چکیده
High-temperature insulating ferrimagnetism is investigated in order to further reveal its physical mechanisms, as well as identify potentially important scientific and practical applications relative to spintronics. For example, double perovskites such as Sr2FeOsO6 and Ca2FeOsO6 are shown to have puzzling magnetic properties. The former is a low-temperature antiferromagnet while the latter is a high-temperature insulating ferrimagnet. In order to understand the underlying mechanisms, we have investigated the frustrated magnetism of A2FeOsO6 by employing density functional theory and maximally-localized Wannier functions. We find lattice distortion enhances the antiferromagnetic nearest-neighboring Fe-O-Os interaction, however weakens the antiferromagnetic interactions via the Os-O-O-Os and Fe-O-Os-O-Fe paths, so is therefore responsible for the magnetic transition from the low-temperature antiferromagnetism to the high-temperature ferrimagnetism as the decrease of the A(2+) ion radii. Also discussed is the 5d(3)-3d(5) superexchange. We propose that such superexchange is intrinsically antiferromagnetic instead of ferromagnetic as previously thought. Our work clearly illustrates the magnetic frustration can be effectively relieved by lattice distortion, thus paving the way for tuning of complex magnetism in yet other 3d-5d (4d) double perovskites.
منابع مشابه
Investigation of effect of magnetic ordering on structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) using ab initio method
Structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) were studied for each of three magnetic configurations nonmagnetic, ferromagnetic, and antiferromagnetic by using density functional theory in generalized gradient approximations (GGA) and strong correlation correction (GGA + U). Due to magnetic transition from antiferromagnetic to nonmagnetic phase, an electr...
متن کاملStrong ferromagnetism and weak antiferromagnetism in double perovskites : Sr 2 Fe M O 6 ( M = Mo , W , and Re )
Double perovskites Sr 2 FeM O 6 (M =Mo and Re) exhibit significant colossal magnetoresistance even at room temperature due to the high Curie Temperature (419K and 401K). However, such a high Curie Temperature is puzzling, given the large separation between magnetic elements (Fe). Moreover, with M =W, the electronic and magnetic properties suddenly change to insulating and antiferromagnetic with...
متن کاملExperimental aspects of Alpha, Beta angles distortion on superconductivity in 1111-type Iron-based superconductor
In this research, we aim to clarify the relationship between the structural distortion due to doping and the superconductivity existence in the FeAs4 structure. For this, we have prepared polycrystalline of NdFeAsO0.8F0.2, NdFeAs0.95Sb0.05O0.8F0.2 and Nd0.99Ca0.01FeAsO0.8F0.2 samples by one-step solid state reaction method. The structural and electrical properties of the samples were characteri...
متن کاملColossal magnetoresistance
We review recent experimental work falling under the broad classification of colossal magnetoresistance (CMR), which is magnetoresistance associated with a ferromagnetic-toparamagnetic phase transition. The prototypical CMR compound is derived from the parent compound, perovskite LaMnO3. When hole doped at a concentration of 20–40% holes/Mn ion, for instance by Ca or Sr substitution for La, the...
متن کاملMode-crystallography analysis and magnetic structures of SrLnFeRuO6 (Ln = La, Pr, Nd) disordered perovskites.
The crystal and magnetic structures of SrLnFeRuO(6) (Ln = La, Pr, Nd) double perovskites have been investigated. All compounds crystallize with an orthorhombic Pbnm structure at room temperature. These materials show complete chemical disorder of Fe and Ru cations for all compounds. The distortion of the structure, relative to the ideal cubic perovskite, has been decomposed into distortion mode...
متن کامل